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Tableaux Calculus

• The Tableaux Calculus is an algorithm solving the problem of  

satisfiability.

• If a formula is satisfiable, then there exists an open branch in  the 

tableaux of this formula.

• The procedure attempts to construct the tableaux for a  formula.

• Sometimes it is not possible to construct the tableaux since the 

model of the  formula is infinite.

• The basic idea is to incrementally build the model by looking  at the 

formula, by decomposing it in a top/down fashion. 

• The  procedure exhaustively looks at all the possibilities, so that it can 

possibly prove that no model could be found for unsatisfiable formulas.
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Same idea as in PL – extended to handle FOL Language



Propositonal tableaux (recap)

. . . for propositional connectives

α rules

𝜑 ∧ ψ

𝜑
ψ

¬(𝜑 ∨ψ)

¬𝜑
¬ψ

¬¬𝜑

𝜑

¬(𝜑⊃ψ)

𝜑
¬ψ

β rules
𝜑 ∨ψ 𝜑⊃ψ ¬(𝜑 ∧ ψ) 𝜑≡ψ ¬(𝜑≡ψ)

𝜑 ψ ¬𝜑 ψ ¬𝜑 ¬ψ
𝜑
ψ

¬𝜑
¬ψ

𝜑
¬ψ

¬𝜑
ψ

3



First order tableaux

Definition

A tableau is a rooted tree, where each node carries a first order sentence (closed

formula), and the children of a node n are generated by applying a set of expansion

rules to n or to one of the ancestors of n.

Definition

The expansion rules for a first order semantic tableaux are those for the  

propositional semantic tableaux, extended with the following rules that  deal 

with the quantifiers:

γ rules Where t  is a term free

for x  in φ

δ rules

where  c is a new
constant not
previously appearing 
in the tableaux

)¬∃𝑥. 𝜑(𝑥

)¬𝜑(𝑡

)¬∀𝑥. 𝜑(𝑥

)¬𝜑(𝑐

)∃𝑥. 𝜑(𝑥

)𝜑(𝑐

)∀𝑥. 𝜑(𝑥

)𝜑(𝑡
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Substitution φ[x/t]

If φ(x ) is a free variable and t is a term, we use the notation φ(t)  

instead of the more precise notation φ[x/t] to represent the  

substitution of x  for t  in φ.

Substitution

φ[x/t] denotes the formula we get by replacing each free  

occurrence of the variable x in the formula φ by the term t. This is 

admitted if t does not contain any variable y such that x occurs in  

the scope of a quantifier for y (i.e., in the scope of ∀y or ∃y).
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Example (of substitution)

P(x, y, f(x))[x/a]

Substitution φ[x/t]

= P(a, y , f (a))

∀xP(x,y)[x/b] =  ∀xP(x, y)

∃xP(x, x)∧Q(x)[x/c] = ∃xP(x, x)∧Q(c)

P(x, g(y))[y/f (x)] = P(x, g(f (x)))

∀x.P(x,y)[y/f (x)] Not allowed since f (x ) is  not 

free for y in ∀x.P(x, y)
=
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Universal quantification rule

∀𝑥 . 𝜑(𝑥)

𝜑(𝑡)

• ∀x. . φ(x ) means that for every object of the domain, the  property 

φ(x ) should be true.

• a term t that occurs in the tableaux denotes an object of the domain

• therefore, φ(t) must be true for all the terms t that occurs in the 

tableaux. I.e., the ∀ rule can be applied as many times as one want to any 

term that appears in the tableaux.

Exercize

Show that the following tableaux rule is sound.
∀𝑥∃𝑦𝑃(𝑦, 𝑥 )

∃𝑦𝑃(𝑦, 𝑓 (𝑥))
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Existential quantification rule

for a new constant c

• ∃x.φ(x ): for some object of the domain φ(x ) should be true.

• But we don’t know which object of the domain has the property φ,  we 

know only that there is at least one.

• Therefore this rule cannot be applied to the terms that  already occur in 

the tableaux, since otherwise we would  introduce an unjustified 

property on the chosen element

• The trick is to introduce a term to denote an unconditioned  object 

(sometimes called “fresh” constant/variable) for  denoting an “unknown” 

object, i.e., an object on which we  have no commitment.

• Therefore we  allow only to infer φ(c) form ∃x.φ(x), where c is fresh.  

∃x.φ(x )

𝜑(𝑐)
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Open and Closed Branches

• A tableaux rooted in φ is a method to search an  interpretation 

that satisfies φ

• Every branch of a tableaux with root in φ, corresponds  to an attempt to 

find an interpretation I that satisfies φ.

• The interpretation corresponding to a branch b of a tableaux  should

satisfy all the formulas that appear in the  branch.

• If the branch contains two opposite literals, i.e. P(t1, . . . , tn)  and ¬P(t1, . . . , 

tn), then the branch cannot correspond to an  interpretation, since there 

is no interpretation that can satisfy one formula and its negated. So we can  

consider this attempt to find an interpretation failed. In this  case we say 

that the branch is closed.

• If in a branch b all the rules have been applied and there is no  opposite 

literals, then this branch corresponds to an  interpretation. We call such a 

branch open
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Example

OPEN

Example

∃x (P(x) ∧ ¬Q(x)) ∧ ∀y (P(y) ∨ Q(y))

∃x (P(x) ∧ ¬Q(x))

∀y (P(y) ∨ Q(y))

P(a) ∧ ¬Q(a)

P(a)

¬Q(a)

P(a) ∨ Q(a)

P(a) Q(a)

CLASH
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The tableaux method

1

• To test a set of formulas Γ is satisfiable, start a tableau with all 
formulas in Γ. If the tableau  closes off, then Γ is not satisfiable. 
If the tableau does not  close off, then Γ is satisfiable, and from 
any open branch we can read off an interpretation satisfying Γ.

• A formula is unsatisfiable iff is not satisfiable

• To test a formula φ for validity, start a tableau with ¬φ. If the 

tableau closes off, then φ is logically valid.

• To test whether φ is a logical consequence of Γ, start a 

tableau with all formulas in Γ and ¬φ. If the tableau closes off, 

then φ is indeed a logical consequence of Γ.

• Two formulas are logically equivalent if logical consequence

holds in both directions
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Example

Check via tableaux if the validity/satisfiability of the  formula

φ = ∀x, y (P(x) ⊃ Q(y)) ⊃ (∃xP(x) ⊃ ∀yQ(y))

∃xP(x)

¬∀yQ(y)

P(a)

¬Q(b)

P(a) ⊃ Q(b)

¬P(a)

CLASH

Q(b)

CLASH

We try, vith the tableaux, to build a model for the

negation of φ. Since the tableaux ends with all

CLASHES, there is no such a model. In other

words, for all I, I ⊭ ¬φ. Which implies that for all

I, I ⊨ φ, i.e., that φ is valid.

Solution

¬(∀xy (P(x) ⊃ Q(y)) ⊃ (∃xP(x) ⊃ ∀yQ(y)))

∀xy (P(x) ⊃ Q(y))

¬(∃xP(x) ⊃ ∀yQ(y))
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Example

Example

To check if the formula

(∃x(P(x)∨Q(x))) ≡ ((∃xP(x))∨(∃xQ(x))) is satisfiable, we start

with a tableaux with this formula:
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¬ ∃x Px ∨ Qx ⇔ ∃xPx ∨ ∃xQx

∃x Px ∨ Qx

¬( ∃xPx ∨ ∃xQx)

¬∃xPx

¬∃xQx

Pa ∨ Qa

Pa

¬Pa

Qa

¬Qa

¬∃x Px ∨ Qx

∃xPx ∨ ∃xQx

∃xPx
Pb

¬(Pb ∨ Qb) 

¬Pb

¬Qb

∃xQx
Qc

¬Pc

¬Qc

¬(Pc ∨ Qc) 



Example (Cont’d)

Example

Check if ∀xP(x) ∧ ∃x ¬P(f (x)) is valid/satisfiable/unsatisfiable.

Solution

∀xP(x ) ∧ ∃x ¬P(f (x))

∀xP(x)

∃x ¬P(f (x))

¬P(f (c))

P(f (c))

×
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Example

Example

Check if ∀xP(x) ∧ ∃x ¬P(f (x)) is valid/satisfiable/unsatisfiable.

Solution

∀xP(x) ∧ ∃x ¬P(f (x))

∀xP(x)

∃x ¬P(f (x))

¬P(f (c))

Now to expand ∀xP(x), we  can use any ground term t. Possible choices: 

c, f (c), f (f (c)), . . . .  we choose f (c) because we want to create a clash 

with ¬P(f (c)). But possibility of a loop when searching!
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